A'yuni D Q, Hadiantono H, Velny V, Subagio A, Djaeni M, Mufti N. Efect of Potassium Hydroxide Concentration and Activation Time on Rice Husk-Activated Carbon for Water Vapor Adsorption. IJMSE 2024; 21 (3) :1-10
URL:
http://ijmse.iust.ac.ir/article-1-3522-en.html
Abstract: (5290 Views)
Rice husk carbon by-product from the industrial combustion is a promising source to produce a vast amount of activated carbon adsorbent. This research prepared rice husk-activated carbon adsorbent by varying the concentration of potassium hydroxide solution (5, 10, 15, 20 % w/v) and activation time (2, 4, 6, 8 hours). Fourier-transform infrared spectral characterization (FTIR) indicated a significant effect before and after activation, especially the presence of hydroxyl groups. Based on the iodine adsorption, the specific surface area of the produced-activated carbon was approximately 615 m2/g. Experimental results showed that increasing potassium hydroxide concentration and activation time increases the water vapor adsorption capacity of the activated carbon. Compared with the rice husk carbon, the KOH-activated carbon enhanced the water vapor adsorption capacity to 931%. In the adsorption observation, changing the temperature from 15 to 27 ℃ caused a higher water vapor uptake onto the activated carbon. Two adsorption kinetics (pseudo-first- and pseudo-second-order models) were used to evaluate the adsorption mechanism. This research found that rice husk-activated carbon performed a higher water vapor adsorption capacity than other adsorbents (silica gel, zeolite, and commercially activated carbon).
Full-Text [PDF 810 kb]
(471 Downloads)
Highlights:
- Activated carbon with high water vapor adsorption capacity was produced from industrial waste rice husk carbon.
- Iodine adsorption showed that the surface area of the activated carbon was approximately 615 m2/g.
- After KOH-activation, the adsorption capacity was enhanced to more than 900%.
- The water vapor adsorption capacity of the produced activated carbon was higher than other commercial adsorbents.