The lindgrenite compounds [Cu3(MoO4)2(OH)2] with various architectures and high crystallinity were prepared by a simple surfactant-assisted hydrothermal method. Then, the Cu3Mo2O9 samples were prepared by calcination of the as-synthesized Cu3(MoO4)2(OH)2. The resulting samples had high crystallinity, colloidal properties, high-yield, large-scale production capability with using of nontoxic and inexpensive reagents and water as an environmentally solvent. The scanning electron microscope studies showed that the as-prepared lindgrenite nanostructures were well crystallized with rod, sheet and hollow sphere morphologies. These products were content of the Cu3(MoO4)2(OH)2 rods with diameters of about 100 nm, the Cu3(MoO4)2(OH)2 nanosheets with thickness of 30–100 nm and the Cu3(MoO4)2(OH)2 hallow spheres, consisting of a large number of nanosheets with thickness of about 40-70 nm.TheCu3Mo2O9 samples that obtained by thermal treatment of lindgrenite retained the original morphologies. Meanwhile, the photoluminescence and magnetic properties of the nanosheet samples showed super paramagneticbehavior at room temperature and in comparison with previous works, Cu3(MoO4)2(OH)2 and Cu3Mo2O9 samples synthesized by the surfactant-assisted hydrothermal method had a very obvious red-shifted PL emission and high intensity.