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1. INTRODUCTION

In many industrial and manufacturing
applications, there exist many pieces of
equipment subjected to repeated loads. Generally,
fatigue fractures are the reason of 90 % of
mechanical parts failure during their usage [1].
Likewise, some equipment components work in
different environmental conditions such as dry,
wet, and corrosive and the combination of
corrosion and fatigue may cause the rapid failure
of these components. On the other hand, damage
caused by both corrosion and fatigue is more than
the damage which is related to either fatigue or
corrosion [1, 2]. Therefore, using beneficial
approaches to obtain high levels of fatigue
resistance and fine corrosion protection is
considerable in different industries.

The effects of corrosive environments on the
fatigue behavior of metals have been studied
since 1930 [3]. Many methods have been
employed to protect steel parts from corrosion
and fatigue such as changing the stress of metal
surface by shot penning, surface rolling, or

coating by organic or inorganic materials [4].
With respect to the cost and effectiveness,
coating is the most common anti-corrosion
treatment [3, 5]. Generally, electroplating (as one
of the coatings methods) reduces the fatigue life
of steel parts due to the initiation of micro cracks
in the coating, which then penetrates through the
substrate [6]. However, due to their useful
effects, various coatings such as hardened
chromium and nickel, warm galvanization, and
titanium with different combinations (such as
TiN, TiC, and TiO2) are used in automotive,
marine, and offshore structures and aerospace
industries [6-9].

Many researchers have investigated the effects
of different coatings on the mechanical properties
and corrosion behavior of metallic materials [10-
12]. However, only a few of them have
investigated the coating influences on the fatigue
behavior [13-16] related to the effect of coating
thickness on the fatigue life of the different
components [17-20].

In the present study, an attempt was made to
study the effect of nickel coating thickness on the
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fatigue life of CK45 steel by testing the fatigue
experimentally. Afterwards, different modelling
approaches of finite element method (FEM) and
artificial neural network (ANN) were used to
simulate the process. Three groups of standard
specimens were prepared for the fatigue test, then
the hardened nickel coatings were carried out to 26
specimens with various thicknesses of 13 and 19 μm
and polishing performed on the other specimens. 

The finite element models are widely used in
different industries because of time and cost-saving.
Therefore, many researchers in the area of coatings
and their effects have focused on the different
coatings of FEM and have performed fatigue
analysis to predict the fatigue life and damage [5-7,
10-13]. The published results show that the fatigue
life and fatigue strength of the coated samples were
scientifically reduced in comparison with as-
received ones [6, 21-22]. It is clear that the fatigue
crack initiation and propagation normally start from
the surface. However, the interface area between the
base metal and the coating is a prone area for starting
damage. Therefore, in the last decade, researchers
have tried to simulate the real interface area by
utilizing different methods such as spring
connection, cohesive zone element, etc. [5-6]. The
new connection pattern of spring is used to simulate
the interface phase. The current model has been
prepared based on the previous connection pattern of
spring. The obtained results show that the present
model is more accurate than the previous model in
comparison with the fatigue test data. 

On the other hand, ANNs are widely used as an
alternative approach to tackle complex and ill-
defined problems in different aspects of science
and engineering [23]. Due to their massively
parallel structure, ANN can deal with many multi-
variables non-linear modeling for which an

accurate analytical solution is very difficult to
obtain [24].They can learn from examples, they are
able to handle noisy and incomplete data, they are
also able to deal with nonlinear problems [25].

Many researches have been able to
successfully use ANN for modeling the fatigue
behavior of the materials. Different ANN
simulations are carried out for the fatigue life
prediction of different materials such as
composites [25-28], steels [29-31], and
aluminums [32, 33]. Moreover, some studies
have been conducted to model the other aspects
of the fatigue behavior of materials such as
fretting [34] and also the corrosion [35] fatigue
behavior by using ANN. In present study, ANN
modeling is developed using the data of the
experimental tests, the stress amplitude and
thickness of coating are regarded as the input
parameters, and the fatigue life is considered as
an output parameter of the network. 

To the best of the authors’ knowledge, this is the
first study that investigates the capability of both
FEM and ANN models in the simultaneous fatigue
life predication of the coated material. The
comparison of the experimental results and the
predicted values of both FEM and ANN are in good
agreement and the modeling results are acceptable.

2. EXPERIMENTAL PROCEDURE

Three groups of standard specimens made of
Ck45 steel with yield and ultimate stresses of 475
and 515 MPa were prepared for the rotating
cantilever bending fatigue test according to the
English standard BS3518 and Mac Adam Beam [7,
52]. Then, the hardened nickel coating was carried
out to 26 specimens with various thicknesses of 13
and 19 μm in the same conditions of operation
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Fig. 1. Specimen dimensions for fatigue test 
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including temperature, humidity, and other effective
factors in the components [8, 9]. Polishing was
performed on the other uncoated specimens. Figure
1 illustrates the dimensions of the used specimens in
this study.

To analyze the accuracy of the plating and the
thickness of the coatings, several Scanning Electronic
Microscopy (SEM) images with different
magnifications have been prepared as shown in Fig. 2. 

The most common type of fatigue test, the
rotating cantilever beam under pure bending
load, was applied (see Fig. 3) such that the stress
was always a reverse stress. The average stress is
considered equal to zero and the stress ratio of R=
-1 [4]. The loading frequency of 58 Hertz is used
for all fatigue tests. 

3. FINITE ELEMENT ANALYSIS 

Full size of Mac Adam rotating cantilever
beam under pure bending load was simulated by

using FEM. The geometrical dimensions and
material are the same as those of the tested
specimens (see Fig. 4). To create finite element
simulation, three different types of mesh,
including shell, solid, and linear spring, were
used for coating, base metal, and interface phase,
respectively. The mesh convergence was studied
based on the previous FEM [6]. 

Two materials were used to investigate the fatigue
life of the coated specimens as recommended by Vic
[53]. The mechanical properties of the different
components are presented in Table 1. 

A thin hardened Nickel coating layer with the
thicknesses of 13 and 19 μm was simulated on the
base metal by assigning the related nickel mechanical
characteristics to the finite element model.

The quality of the contact surface between the
coating and base metal is the most important
parameter on the simulation and response of the
industrial coated parts.

In this model, 3D linear spring element is used

 

Fig. 2. Surface of components coating by SEM (a) Coating thickness is 13 μm (b) Coating thickness is 19 μm 

 
Fig. 3. Schematic of cantilever type rotating bending fatigue machine
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instead of Shell element in the previously
simulated FEM [6], which has the axial, bending,
and torsion stiffness. In the Model 1/4 of the
components in the cylindrical coordinates, the
number of nodes on the outer surface of the base
metal is considered equal to the number of nodes
on the interior surface of the coating; and the
nodes of the two levels have been linked together
with a certain connection pattern by utilizing the
spring element. The spring stiffness (axial,
bending, and torsion) of a solid cylindrical beam
(base metal model) and a hollow cylindrical
beam (coating) are obtained through resistance
formulas, as we have [5]:

(1)

(2)

(3)

One of the important parameters that must be
considered in the present finite element model is the
length of the spring element used to model the
intermediate phase between the base metal and the
coating. In order to specify the two side phases, the
length of the metal link of the atoms of the two side
phases is considered as the length of the
circumstance. In other words, it is considered equal
to the length of the spring elements in the present
model. We can see the finite element model used in

this research in Fig. 5:
Unit force is applied on the edge line of one end

and the other end is fixed on 5 degrees of freedom
(DOF) which can only rotate around the Z axis as
boundary conditions. Constant angular velocity of
364.43 rad/s is applied on the FE model. Stress
analysis is performed to determine the critical failure
region. Then, the fatigue life of the specimens is
predicted by utilizing the post-processing step of the
finite element analysis output results in ANSYS-
WORKBENCH software. 

4. ARTIFICIAL NEURAL NETWORK

ANNs are computational models and their basis
has been inspired by human’s brain, which  
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Fig. 4. Finite element model of the experimental specimen for the rotating cantilever bending beam

 
Component 

Density 
[Kg/m3] 

Poisson’s 
ratio 

Elastic 
modulus 

[GPa] 

Ultimate 
stress 
[MPa] 

Yield 
stress 
[MPa] 

Base Metal 7700 0.31 200 515 475 
Coating 8890 0.315 220 1000 935 

  

Table 1. Mechanical properties of the coated specimen components [53]

Fig. 5. A schematic of the new interface finite element
model of the deposited components consisted of three

independent phases
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simulate the function of biological network
composed of neurons. These networks have been
widely employed to adapt and fit any complex
database and have the power of prediction and
optimization [36, 37]. The circumstance of
modeling via ANN with considering the
performance of the biological and artificial neurons
has been researched in many studies [38, 39].

An artificial neuron is presented in Figure 6. A
single neuron computes the sum of the entered
inputs, which are multiplied with a variant called the
weight, adds a bias term, and drives the result
through a transfer function to produce a single
output. Generally, linear, tangent sigmoid (Tansig),
and logarithmic sigmoid (Logsig) functions are used
as the popular transfer functions (see Fig. 6). 

Structurally, every ANN is made up of input
layer, hidden layer/layers, and output layer [40].
The structure of an ANN model is determined by
the number of its layers, respective number of
nodes in each layer, and the nature of the transfer
function [41]. The architecture of a neural
network that feeds with r and s input p and output
a parameters respectively, with weight matrixes
w, bias vectors b, linear combiner u, and transfer
function f, is demonstrated in Figure 7. 

4. 1. ANN Modeling 

In order to model a process via ANN, two main

steps of network training and testing must be
considered. The main difference between these
two networks is the used data sets; the employed
data set for testing was not used during training.
The training process is necessary to achieve the
optimal network structure and the related
parameters. However, the testing process is
essential for performance assessment of the
trained network. The scattering rate of the data
must be regarded as the main point in developing
the networks. In this study, all values of each

Fig. 6. Schematic of an artificial neuron

 
Fig. 7. One layer network that feeds inputs with r and

outputs with s 
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input and output data parameters are divided into
maximum absolute value and then normalized;
also the used data are dimensionless. The
normalized data are in the range of [0, +1]. The
used normalized data set for developing the
networks is shown in Appendix A.

4. 2. Training and Testing Processes 

Training is the process of determining the
weights and biases values and obtaining the
optimum patterns of learning. The sets of known
data (inputs and outputs) are employed to train
the network.  However, there is no exact and
suitable formula in order to obtain the optimal
structure of ANN with the highest performance
and accuracy and the least errors. Therefore, one
of the challenging steps in ANN modeling is
selecting the optimal architecture via trial and
error [42, 43].  Usually, this procedure is
accomplished by developing different networks
with different structures. The developed
networks are compared to gain the acceptable
ranges of error. In this study, the feed-forward
error back-propagation (BP) algorithm is used to
train the networks. Although BP training
algorithm has some drawbacks, this method was
selected because of its simplicity and reliability.
This algorithm is one of the most common and
suitable ones for multilayer perceptions which
minimize the error for particular training patterns

using the gradient descent technique [44]. 
In the present study, the fatigue behavior of non-

coated and coated specimens of CK 45 steel with
nickel coating was modeled. The amplitude stress
and coating thickness are regarded as inputs and the
number of cycles to failure is gathered as an output
of the neural networks.  Figure 8 displays the
schematic of the ANN structure with four layers and
feed-forward with BP algorithm in which all the
neurons are fully interconnected.

The performance of the ANN modeling with
regard to the effects of the hardened nickel
coating on the fatigue behavior of CK45 mild
alloy steel was evaluated using four statistical
criteria, including:  coefficient of correlation
(R2), root mean square error (RMSE), mean
relative error (MRE), and mean absolute error
(MAE). These statistical criteria have been
determined as follows [51]:

(4)

(5)

(6) 
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Fig. 8. Schematic of the ANN structure with four layers and feed-forward with BP algorithm
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(7)

where, n is the number of the used sample for
modeling, fEXP is the experimental value, and
fANN is the networks’ predicted value. Also, the
values of FEXP and FANN are calculated as
follows [38]:

(8)

(9)

The methodology of ANN is stated due to the

convergence of errors criteria. The basis of the
used method in this study is the value of R2,
although the other values of statistical criteria
such as RMSE [45] or mean square error (MSE)
[46] can be employed as the foundation of the
ANN developing approach. R2 is a measure of
correlation which is widely used as a rate of the
degree of linear dependence between two
variables.  Based on the results reported by
Elangovan et al. [47] and Maleki et el. [48-50,
54], R2 values of more than 0.99 are much
acceptable for this criterion. The methodology
used for the neural network application is shown
in Fig. 9.

n

i
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n
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1
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Fig. 9. The used methodology for developing ANN
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5. RESULTS AND DISCUSSION

5. 1. Experimental Results

The fatigue test was performed for 13 different
stress levels. The stress levels are selected lower
than the yield stress to determine the fatigue life
of the coated and uncoated specimens in the high
cycle regime. The test was repeated twice for
each level and the averages of the obtained
results are reported as the failure cycle for each
level of stress [4]. The fatigue test results are
shown in Fig. 10.

According to the experimental results, it can be

observed that the highest range of the fatigue life
is related to the coated specimens with thickness
of 13 µm. Moreover, the fatigue life was reduced
by increasing the thickness which had
detrimental effects, and the lowest rate of the
decreased fatigue life is for the coating thickness
of 19 µm.

5. 2. FEM Results

After considering the requirements of the FEM
simulation, the life contours of the specimens
were achieved; the related results for the
uncoated components are presented in Figure 11.

E. Maleki and K. R. Kashyzadeh

 
Fig. 10. S-N curve of the coated samples with different thickness

(a)  
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(b) 

(c) 

(d) 
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(e) 

(f)  

(g)  
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(h) 

(i) 

(j) 



There exists a small difference between the
obtained results from the finite element analysis
and the experimental data, which is negligible
and acceptable. The main reason for this
difference is using the linear spring element,
which makes it possible to have a better

approximation to reality; the spring constants
should also be calculated using the different
theories of potential energy. However, in this
research, the linear spring element has been
employed to reach acceptable answers using the
minimum amount of time (increasing the speed
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(k) 
( )

(l) 

Fig. 11. The fatigue life contour for samples without coating under different stress levels: (a) Stress level of 440 MPa and
failure cycle of 48586, (b) Stress level of 430 MPa and failure cycle of 55211, (c) Stress level of 420 MPa and failure cycle
of 64018, (d) Stress level of 410 MPa and failure cycle of 77824, (e) Stress level of 400 MPa and failure cycle of 90649, (f)

Stress level of 390 MPa and failure cycle of 105129, (g) Stress level of 380 MPa and failure cycle of 118116, (h) Stress
level of 370 MPa and failure cycle of 143429, (i) Stress level of 360 MPa and failure cycle of 167910, (j) Stress level of 350

MPa and failure cycle of 215223, (k) Stress level of 340 MPa and failure cycle of 260587 and (l) Stress level of 330 MPa
and failure cycle of 345647



of solving the equations) and simplification of
ruling equations (using linear terms instead of
nonlinear terms).

5. 3. ANN Results

Various networks were trained to achieve the
optimal structure of the networks. The related
information of 5 different trained networks with
trial and error approach for modeling the fatigue
life is shown in Table 2. As shown, the structure
of the ANN modeling is stated from simple to
complex; the more complexity of the networks
structure, the higher rate of training will be to
balance the speed of the training process.  After
investigating the trained network, the ANN
modeling number 5 with the architecture of
2×14×14×1, which has the highest value of R2

and the least values of RMSE, MRE, and MAE,
is selected. Figure 12 shows the comparative
diagrams of the predicted and experimental
values for both the training and testing samples
for all of the considered networks output
parameters.

Based on the evaluation of the ANN via the
mentioned statistical criteria for both the training
and testing data sets, the relevant information of
the employed network is shown in Table 3.

According to the obtained results, the values of
R2 in the network training are more than 0.999
and the RMSE, MRE, and MAE values are very
close to zero. Thus, it is concluded that the
networks are trained finely and adjusted
carefully.

Likewise, the values of R2 in the network
testing are more than 0.999. The values of R2 in
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Fig. 12. The comparison of the ANN predicted and experimental values for each (a) training samples and (b) testing samples

ANN 
Modeling 

No. 

Rate of 
Training 

Layers 
Structure 

 

Hidden 
Transfer 
Function 

Output 
Transfer 
Function 

R2 RMSE MRE (%) 
 MAE 

1 0.130 2×6×8×1 Logsig Linear 0.9868 0.0045 0.7293 0.0030 

2 0.130 2×8×10×1 Tansig Linear 0.9889 0.0039 0.6774 0.0029 

3 0.140 2×10×12×1 Logsig Logsig 0.9932 0.0034 0.6111 0.0023 

4 0.145 2×12×14×1 Logsig Tansig 0.9987 0.0026 0.5688 0.0019 

5 0.150 2×14×14×1 Logsig Logsig 0.9998 0.0022 0.5172 0.0016 

Table 2. The related information of 5 different networks for modeling the fatigue life of the coated CK45 steel



the networks testing have negligible reduction in
comparison with the networks training.
Moreover, the values of RMSE, MRE, and MAE
in the networks testing are very small, which is
acceptable. Totally, the results of the statistical
criteria show that the obtained error values in the
accomplished modeling is less than 1%.

5. 4. Comparison of the Experimental and

Predicted Results

After accomplishing the simulations with two
different approaches of FEM and ANN, their
obtained results along with the achieved
experimental values for each mentioned coating
thicknesses of 0, 13, and 19 µm are separately
illustrated in Figure 13. 

Figure 14 depicts the obtained relative error
(RE) values of both the FEM and ANN
simulations for each considered amplitude stress
and coating thickness. According to the results,
the achieved minimum and maximum (min, max)
values of RE for FEM and ANN are (min: 1.28,
max: 14.20) and (min: 0, max: 1.430),
respectively. Also, the FEM and ANN
simulations have the average relative errors of
9.60 and 0.55 %, respectively. The achieved
results indicate that in modeling the fatigue
behavior of the nickel coated CK45 with different
thicknesses, the ANN modeling has the lower
error and more accuracy than the FEM
simulation, although the carried out numerical
solution is acceptable with considering the
common and convectional ranges of errors for its
related approach. 

The point worth mentioning is that although
the obtained results of ANN are more accurate
than the FEM ones, if the used data set for
developing the network changes, the new
networks with different structures must be trained

and tested for predicting the fatigue life of the
coated material. However, the accomplished
FEM simulation, which is validated with the
related experimental results, can be used in any
other cases of coatings and base materials.
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Output parameter 
 

Network Training Network Testing 

R2 RMSE MRE (%) MAE R2 RMSE MRE(%) MAE 

Fatigue Life 0.9999 0.0022 0.5172 0.0016 0.9997 0.0039 0.6693 0.0029 

Table 3. The obtained values of R2, RMSE, MRE, and MAE for the trained and tested network

Fig. 13. The comparison of the experimental, FEM, and
ANN results for (a) as-received, (b) coated with thickness

of 13 µm, and (c) coated with thickness of 19 µm
specimens



Therefore, considering the advantages of the
carried out simulations, when these methods are
finely adjusted, the modeling results are in
acceptable agreement with the experimental
results. And both FEM and ANN can be used
instead of experiments to decrease costs and the
need for special testing facilities required to study
the effects of coating thicknesses on the fatigue
behavior of materials. 

6. CONCLUSION

This paper studied the effect of the hardened
nickel coating thickness on the fatigue life of
CK45 steel with two different thicknesses.
Performing the fatigue test resulted in the High-
Cycle-Fatigue (HCF) properties of the coated
samples with different thicknesses. Afterward,
the capability of the two different approaches of
FEM and ANN in modeling the fatigue life of the
coated specimens was compared. The achieved
results of the accomplished simulations represent
that both simulations are acceptable and have
good agreement with the experimental results and
that both of them can be used instead of costly
experiments. According to the obtained results,

FEM and ANN have the average relative errors of
9.60 and 0.55 %, respectively, and that the ANN
model has a better performance than FEM. But,
the presented neural network structures are
unique to this case of base metal and coating.
However, the accomplished FEM simulation,
which is validated with the related experimental
results, can be used in any other cases of coatings
and base materials.
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Fig. 14. The comparison of the obtained relative error values of the FEM and ANN results
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