Volume 19, Issue 3 (September 2022)                   IJMSE 2022, 19(3): 24-31 | Back to browse issues page


XML Print


Abstract:   (5860 Views)
 
It has long been thought-provoking and challenging as well for researchers to design and produce a special low-modulus β titanium alloy such as Ti‐35Nb‐7Zr‐5Ta, representing optimal mechanical properties that is needed to successfully simulate bone tissue. In order to identify the key effects of processing pathways on the development of microstructure, Young’s modulus, and strength, a nominal Ti-35Nb-7Zr-5Ta alloy was made via casting, hot forging, homogenizing, cold rolling and finally annealing. Results from tensile test alongside microscopic and XRD analysis confirm the importance influence of processing method on fully β phase microstructure, low elastic modulus and high strength of the alloy. The specimen with post-deformation annealing at 500 °C demonstrated the Young’s modulus of 49.8 GPa, yield strength of 780 MPa and ultimate tensile strength of 890 MPa, all of which are incredibly close to that of bone, hence suitable for orthopedic implants. At temperature above 500 °C, a sharp fall was observed in the mechanical properties.
Full-Text [PDF 939 kb]   (2285 Downloads)    
Type of Study: Research Paper | Subject: Ceramics

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.