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Abstract: The main purpose of this investigation was to assess the effect of post-deposition annealing treatment on 
the electrochemical behavior of TiN coating developed on AISI 304 stainless steel substrate using cathodic arc 
evaporation physical vapor deposition (CAE-PVD). Post-annealing treatment at 400ºC was performed on the coated 
substrate for 1 h. The studied samples were characterized using X-ray diffraction (XRD), scanning electron 
microscope (SEM), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) tests. 
The preferred orientation of TiN (111) was verified by XRD patterns. The crystallinity of the coating was increased 
after annealing treatment. SEM observations indicated that TiN coatings free of cracks were developed on the 
substrate. The electrochemical measurements elucidated that the annealed coating had better corrosion resistance 
compared to that of the as-deposited coating with a lower current corrosion density. This investigation implies that 
improved corrosion performance of the TiN coating can achieved by performing post-deposition annealing 
treatment. 
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1. INTRODUCTION 

In recent years, among the numerous coatings 
available on the market, nitride-based coatings 
such as titanium nitride (TiN) are extensively 
used to improve the electrochemical, mechanical, 
and tribological properties of the coated tools. 
TiN is one of the first transition nitride coatings 
that has gained a lot of interest from researchers, 
because of its properties including high corrosion 
resistance, hardness, and wear resistance, and is 
deposited on the surfaces of medical implants [1, 
2], mechanical, and industrial components [3–6]. 
In a nutshell, the deposition of TiN results in 
amelioration of the superficial properties [7–14], 
the functionality of the parts (electrical, optical, 
etc.), and esthetical finishing of the components 
by giving a yellow-gold luster [15–18]. The 
properties displayed by the nitride coating are 
attributed to the type of elements, the quantity of 
the elements, and the deposition parameters used 
during coating deposition by CAE-PVD [19]. 
Because of the high deposition rate and good 
adhesion of the coating to the substrate, the CAE-
PVD technique is extensively used to deposit 
nitride coating. Although this technique is an 
efficient deposition method, however, it 
introduces some intrinsic defects which can be 
detrimental to the functionality of the coatings. In 

CAE-PVD, a continuous or pulsed electric 
current at low voltage is passed between the 
cathode and anode electrode resulting in the 
evaporation target material (cathode). The 
evaporated materials are deposited on the 
substrates in the form of atoms, molecules, and 
micro-droplets, and the latter resulting in 
formation of the macro-particles [20].  
The macro-particles can be detached from the 
surface, leading to the formation of the preferred 
diffusive paths through the coating to the 
substrates [21]. During deposition by CAE-PVD, 
the substrate and the coating materials are heated 
to a specific temperature. Since the substrate and 
the coating are made up of different alloys, this 
phenomenon can cause different thermal 
coefficients and lattice mismatch between the 
coatings and the substrates [22]. The difference in 
the thermal coefficients will result in the 
formation of residual stress. Certain properties 
such as adhesion, hardness, and corrosion 
resistance of the coatings are impressed affected 
by the residual stresses created during the CAE-
PVD process [20, 23]. Although nitride coatings 
have been proven to have good properties, 
researchers are still investigating ways to improve 
the mechanical, tribological, and corrosion 
resistance of nitride CAE-PVD coatings [24]. 
Proposals to achieve a superior coating include 
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finding the optimal deposition parameters during 
the CAE-PVD process (i.e., arc current, voltage, 
and temperature) [25], treatment of the substrate 
before deposition (pre-deposition treatment) [26], 
treatment of the coatings during deposition 
(intermediate treatment) [27], and after deposition 
treatment (post-deposition treatment) [28].  
One of the post-deposition treatments on 
monolayer coatings that has gained a lot of 
interest in recent years is annealing [12, 29–37]. 
Hsu et al. [38], by depositing a TiN coating on 
AISI 316L stainless steel substrate (using CAE-
PVD), observed that annealing improved the 
resistance to pitting corrosion when the samples 
were immersed in hydrochloric acid and also 
enhanced the adhesion of the coating. Xi et al. 
[39], investigated the influence of annealing on 
the mechanical behavior of TiN coating 
developed using unbalanced magnetron 
sputtering, reported that the mechanical 
properties were enhanced by the annealing 
treatment. Jafari et al. [40] analyzed the annealing 
effect on the optical characteristics of TiN. Also, 
Ponon et al. [41], in the case of annealed TiN 
deposited by magnetron sputtering, observed a 
change in the electrical and thermal properties 
after performing annealing treatment. Popovic et 
al. [42] examined the effect of annealing TiN on 
the optical characteristics and agreed with other 
researchers that annealing treatment affects the 
functionality of the coating. 
Although a lot of research has been done on the 
effect of post-deposition annealing on titanium 
nitride coatings, nevertheless, the effect of 
annealing treatment on the electrochemical 
properties using PDP and EIS has not been 
investigated. Therefore, this study aims to 
investigate the electrochemical behaviors of TiN 
coating after post-deposition annealing in 
Ringer’s solution. For this purpose, TiN coating 
was deposited on AISI 304 stainless steel using 
the CAE-PVD technique and electrochemical 
behavior evaluated using the aforementioned 
electrochemical tests. 

2. MATERIALS AND METHODS 

2.1. Coating and annealing procedure 

In this study, TiN coating was deposited on AISI 
304 substrate using the CAE-PVD method 
(DS&CA601, Yar-Nikan Saleh, Tehran, Iran). 
The substrates were cleaned with acetone and 

alcohol using an ultrasonic cleaner for 20 minutes 
and subsequently, the ion bombardment process 
with a bias pulsed-DC voltage of -800 V for 20 
minutes by argon gas was applied. TiN alloy was 
used as the target material with a target current of 
120 A was utilized. Then, the coating was 
conducted under the vacuum pressure of 5×10-5 
torr. During the deposition process, the distance 
between the substrate and the target was 15 cm 
under temperature of 200ºC. The rotation speed 
for the samples were set at 5 r.p.m with a 
deposition time of 90 minutes. It should be 
mentioned that a Ti interlayer was deposited 
between TiN coating and the substrate to achieve 
good adhesion of TiN coating [43]. The samples 
were placed in an air furnace and heated at 
10°C/min until the temperature reached 400ºC. 
Finally, annealing treatment was performed for 1 
h, then cooled to room temperature inside the 
furnace.  

2.2. Surface Characterization 

The surface morphology of as-deposited and post-
annealed coated specimens was measured by an 
scanning electronic microscope (SEM) (JEOL, 
JSM-840A, Tokyo, Japan). The thickness of the 
coating was analyzed using field emission 
scanning electron microscopy (FESEM) (MIRA 
TESCAN, Brno –Kohoutovice,Czech Republic). 
The present phases and crystallographic 
structures were clarified using an X-ray 
diffractometer (XRD)( Philips -PW1730, 
Eindhoven, Netherlands) equipped with beam 
monochromator copper target (Kα radiation at 30 
mA and 40000 V) and a scanning angular ranging 
from 10 to 80° with a scanning rate of 0.05° and 
a 1 s step size. Panalytical X'Pert high score plus 
software was used to quantify the present phases 
and calculate the crystallite size of the samples 
using Scherrer’s equation. The adhesion of the 
coatings was investigated using Rockwell-C 
hardness (HRC) according to VDI 3198 by 
applying a force of 1471 N for 30 seconds [44]. 

2.3. Electrochemical measurements 

The electrochemical behavior of the specimens 
was examined in Ringer’s solution using the 
autolab type III/FRA2 system conducting Nova 
software 1.7. The electrochemical tests (PDP and 
EIS measurements) were performed under an 
aerated condition in a three-electrode flat cell 
containing a Pt counter electrode, an Ag/AgCl 
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reference electrode, and the studied samples as 
working electrodes. Before performing the test, 
the specimens were immersed in the Ringer’s 
solution under the open circuit potential (OCP) 
condition to reach stability. Then, by applying a 
starting potential of -250 mVAg/AgCl versus the 
stabilized OCP to 1.8 VAg/AgCl, the PDP tests were 
carried out with the scanning rate of 1 mV/s. The 
electrochemical impedance spectroscopy tests 
were conducted in the frequency range of 100 
kHz to 10 mHz. The amplitude of the sinusoidal 
AC voltage employed in EIS measurements was 
5 mV. 

3. RESULTS AND DISCUSSION 

3.1. Microstructural characterization 

The surface and the cross-sectional morphology 
of TiN coated samples including as-deposited and 
annealed specimens were indicated in Fig. 1. As 
shown in Fig. 1, the morphology of the surface 
showed the typical cathodic arc deposited coating

 features, including micropores and 
macroparticles distributed on the surface of the 
coating [20]. 
As can be seen in Fig. 2, the patterns of XRD 
reveal the presence of TiN (NaCl structure) and Ti 
(hexagonal close-packed) peaks in as-deposited 
and annealed coatings (JCPDS no.38-1420) [45], 
similar patterns for TiN coatings deposited by 
CAE-PVD were reported by other researchers [46]. 
Scherrer’s equation (Eq. 1) was utilized to 
calculate the crystalline size (D) of the as-
deposited and annealed specimens as follows 
[47–50]: 

D ൌ ୠ஛

ஒୡ୭ୱ஘
                            (1) 

Where, b is the Scherrer’s constant which, is 
equal to 0.9, β represents full width at half 
maximum (FWHM) of each peak, λ is the 
wavelength (=0.154 nm), and θ is the diffraction 
angle. As reported in Table 1, the crystallite size 
increased from 12 to 20 nm after post-deposition 
annealing treatment [40, 42]. 

 
Fig. 1. SEM images of the surface and cross-sectional (a, b) as-deposited and (c) annealed specimens. 

 [
 D

O
I:

 1
0.

22
06

8/
ijm

se
.2

38
4 

] 
 [

 D
ow

nl
oa

de
d 

fr
om

 ij
m

se
.iu

st
.a

c.
ir

 o
n 

20
25

-0
7-

17
 ]

 

                             3 / 12

http://dx.doi.org/10.22068/ijmse.2384
https://ijmse.iust.ac.ir/article-1-2384-en.html


Yemurai Vengesa, Arash Fattah-alhosseini, Hassan Elmkhah, Omid Imantalab 

4 

 
Fig. 2. XRD patterns of as-deposited and annealed specimens. 

Table 1. Crystallite size, microstrain, and dislocation density values of as-deposited and annealed specimens 

Sample 
Crystallite size 

(nm) 
Dislocation density 

(10-15line/m2) 
Macro strain 

(10-3) 
As-deposited 12 6.9 7.98 

Annealed (400℃) 20 2.5 5.79 

This phenomenon can be due to the increase in the 
kinetic energy and reconfiguration of the atoms as 
a result of the grain boundary migration and sub-
grain growth during annealing treatment [42]. 
The microstrain (ɛ) was calculated using the 
formula below (Eq. 2): 

ɛ ൌ ஒ

ସ ୲ୟ୬஘
                             (2)                                   

Williamson and Smallman’s equation (Eq. 3) was 
used to determine the dislocation density (δ) of 
the as-deposited and annealed specimens. 

ߜ ൌ ଵ

஽మ
                               (3) 

The values of the dislocation density and the 
microstrain were presented in Table 1. 
Considering Table 1, dislocation density and 
microstrain decreased after annealing treatment. 
This can be attributed to the increase in 
crystallinity and annihilation of defects [51, 52]. 

3.2. Adhesion tests 

As mentioned before, the quality of adhesion of 
the coatings was evaluated based on VDI 3198 
indentation test [44]. In the present study, the 
surface of the samples has been loaded with a 
Rockwell-C indenter and the vestiges of the 
indenter evaluated using optical microscope 
(OM) images (Fig. 3). 
 Considering Fig. 3, no vestiges of delamination 
and cracks (correspond to HF1 class adhesion) 
were displayed by both coatings. It can be noted 
that the effect of annealing treatment on the 
adhesion of the TiN coatings is inappreciable [38]. 

3.3. Electrochemical analysis 

The Nyquist and Bode plots of as-deposited and 
annealed specimens after an immersion time of 24 
and 168 h in Ringer’s solution under OCP 
conditions were displayed in Fig. 4. 
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Fig. 3. Images of Rockwell-C indentations for adhesion of (a) as-deposited and (b) annealed specimens. 

 
Fig. 4.  (a, c) Nyquist and (b, d) Bode curves of as-deposited and annealed specimens at OCP condition. 

As can be seen in the Nyquist plots of Fig. 4 (a 
and c), by annealing treatment, the polarization 
resistance of the coating increased. Also, the 
diameter of the semi-circles of the studied 
samples increased by immersion time, implying 
that the corrosion resistance was enhanced [53, 
54]. Considering the Bode phase plots of Fig. 4 (b 
and d), it is clear that the maximum phase angles 

(MPAs) are lower than 90˚. This behavior is 
ascribed to the non-ideal capacitor or constant 
phase element (CPE). Therefore, it is necessary to 
use CPE for fitting and simulating the 
experimental EIS data [54]. It is reported that the 
presence of CPE in CAE-PVD coatings is due to 
the surface heterogeneity of the coating as a result 
of macroparticles and micropores [55]. The 
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impedance of CPE can be expressed as follows 
[24]: 

Z ൌ 	 ଵ

୕ሺ୎னሻಉ
                            (4) 

where Q signifies the CPE constant, j is the 
imaginary number (J2 = −1), ω represents the 
angular frequency (in radian per second), and n 
accounts for frequency-dependent parameter 
which varies with the surface roughness and 
defects present on the surface of the coating [35].  
The validation of the experimental EIS tests is 
dependent on the stability of the electrochemical 
system during recording EIS spectra. Therefore, 
the EIS system should fulfill three requirements 
of linear system theory (LST) including causality, 
stability, and linearity.  
Failure to fulfill these triple requirements 
discredits the EIS data [56]. For this purpose 
(reliability of EIS data), it is common to use 
Kramers-Kronig transformations (KKTs). The 
KKTs were employed on the experimental EIS 
data by transforming the imaginary (Z՛) and the 
real (Z) axes to the real and the imaginary axes, 
respectively, to compare and contrast the obtained 
transformed quantities and the experimental EIS 

data. As shown in Fig. 5, the experimental EIS 
data and transformed results overlapped one 
another that accredits the validation of the 
recorded experimental EIS data [53]. In this 
study, the electrical equivalent circuit (EEC), 
characterized by two-time constants, as illustrated 
in Fig. 4 [57]. The same EEC has been employed 
by other researchers to fit and simulate 
experimental EIS data for mono and multilayer 
nitride coatings [24, 55, 58–60]. In Fig. 6, Rs 
signifies the solution resistance, Rpor denotes the 
coating resistance due to the presence of pores, 
and Rct accounts for the charge transfer resistance 
between the coating and the substrate interface, 
CPEpor and CPEdl are representative of the 
capacitance of the coating and the double layer 
capacitance, respectively [57]. The electrical 
parameters obtained by fitting the experimental 
data according to EEC shown in Fig. 6, were 
summarized in Table 2. According to the 
presented data, Rp for the annealed coating was 
greater than that of the as-deposited coating for 
both immersion times. In addition, for each 
sample, the corrosion resistance increased as the 
immersion time increased.

 
Fig. 5. KKTs of the EIS data acquired for (a, b) as-deposited and (c, d) annealed specimens after (a, c) 24 h and 

(b, d) 168 h of stabilization in Ringer’s solution. 
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Fig. 6. EEC for fitting experimental EIS data of as-deposited and annealed specimens. 

Table 2. EIS parameters of as-deposited and annealed specimens according to immersion time in Ringer’s 
electrolyte acquired by EEC simulation. 

Sample 
Immersion 

time (h) 
Rs 

(Ω.cm2)
Rpor 

(kΩ.cm2) 
CPEpor 

(ൈ ૚૙ି૝Sα/Ω. cm-2)
n1 

Rct 

(MΩ.cm2)
CPEdl 

(ൈ ૚૙ି૝Sα/Ω.cm-2) 
n2 Rp χ2 

As-
deposited 

24 113 2.10 0.75 0.88 3.3 0.021 0.97 3.3 0.001
168 112 2.13 0.68 0.88 19.1 0.035 0.88 19.1 0.001

Annealed 
(400℃) 

24 111 2.10 0.61 0.87 86.9 0.090 0.90 86.9 0.005
168 112 2.30 0.53 0.88 173.0 0.079 0.87 173.0 0.002

Fig. 7 displays the PDP curves of as-deposited 
and annealed specimens after 168 h immersion in 
Ringer’s solution. Tafel extrapolation was used to 
calculate the corrosion potential and the current 
density and the obtained results were summarized 
in Table 3.  

Table 3. PDP data of as-deposited and annealed 
specimens according to immersion time in Ringer’s 

electrolyte. 
Sample Ecorr (mV) icorr (μA.cm-2) 

As-deposited -6.5 0.014 
Annealed 
(400℃) 

-38.0 0.013 

The annealed sample exhibited a higher corrosion 
potential of -38 mV and a lower current corrosion 
density (0.013 μA.cm-2) than that of the as-
deposited sample. The results from the PDP are in 
good agreement with the EIS results, represent 
that post-deposition annealing improved the 
resistance of the coating.  
According to the aforementioned results the 

difference in the electrochemical behavior of as-
deposited and annealed samples can be ascribed 
to the change in the defects on the surface [61], 
relaxation of stress [62], and probable TiO2 
formation [38]. 

 
Fig. 7. PDP curves of (a) as-deposited and (b) 

annealed specimens in Ringer’s solution. 

The decrease in the porosity due to the grains 
growth kinetics and vacancy diffusion model 
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reduces the possible infiltration path of the solute 
[63]. Furthermore, the densification of the coating 
increased the corrosion resistance [64]. In 
addition, the increase in crystallite size effectively 
reduced the grain boundary area and decreased 
corrosion initiation sites [65]. SEM observations 
were performed to compare the surface of the 
coating before and after the electrochemical test. 
As shown in Fig. 8, there was no evidence of 
pitting, crevice, or galvanic corrosion on the 
surface of as-deposited and annealed samples. 
Therefore, the annealed coating is durable for a 
long time when exposed to Ringer’s solution. 

 

 
Fig. 8. Surface SEM images of (a) as-deposited and 

(b) annealed specimens after electrochemical analysis 
in Ringer’s solution. 

4. CONCLUSIONS 

This study aimed to investigate the effects of the 
post-annealing treatment on TiN coating. The 
post-deposition annealing treatment was 
conducted at 400ºC. TiN coating was deposited 
on AISI 304 substrate using the CAE-PVD 

method. The surface morphology of the as- 
deposited and annealed coating showed the 
presence of macroparticles and pinhole 
distributed on the surface of the coatings. The 
XRD analysis showed the presence of TiN and Ti 
phases with NaCl and hexagonal structure, 
respectively. Due to the thermal treatment, 
dislocations density in the coating decreased 
resulting in the decrease in microstrain. The 
quality of the coating was satisfactory as there 
were no cracks or areas of delamination after the 
adhesion test. The crystallite size increased as a 
result of annealing treatment. KKT 
transformation confirmed the validity of the 
obtained data according to LST theory. The 
electrochemical tests indicated that annealed 
coatings had better corrosion resistance with an 
increase of 9% and had more protective properties 
than that of as-deposited coatings, which was 
primarily due to the decrease in porosity, increase 
in the grain size which decreased the active 
anodic area. In a nutshell, the results indicates that 
the annealing treatment can improve the 
electrochemical performance of TiN coating in 
Ringer’s solution and decrease the microstrain 
without compromising the integrity of the 
coating. 
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