Volume 18, Issue 2 (June 2021)                   IJMSE 2021, 18(2): 1-12 | Back to browse issues page

XML Print

Abstract:   (9631 Views)
The work reported in this paper was focused on the investigation of surface morphological, microstructural, and optical features of polycrystalline BaTiO3 thin film deposited on p-type Si < 100 > substrate using e-beam PVD (physical vapor deposition) technique. The influence of annealing over the surface morphology of the thin film was analyzed by X-ray diffraction, atomic force microscopy and scanning electron microscopy characterization methods. When the annealing temperature was increased from as-deposited to 800 °C there was a significant growth in the grain size from 28.407 nm to 37.89 nm. This granular growth of BaTiO3 made the thin film appropriate for nanoelectronic device applications. The roughness of the annealed film got increased from 31.5 nm to 52.8 nm with the annealing temperature. The optical bandgap was computed using Kubelka-Munk (KM) method which got reduced from 3.93 eV to 3.87 eV for the as-deposited to the 800 °C annealed film. The above reported properties made the annealed film suitable for optoelectronic applications. For polycrystalline BaTiO3 thin film the refractive index varied from 2.2 to 1.98 from 400 to 500 nm and it was 2.05 at 550 nm wavelength. The broad peaks in Raman spectra indicated the polycrystalline nature of the thin film. It had been also observed that with the annealing temperature the intensity of the Raman bands got increased. From these results, it was proved that annealing significantly improved the crystallinity, microstructural, surface morphological and optical features of the barium titanate thin film which made it suitable as sensors in biomedical applications as it is cost-effective, lead-free and environment friendly material.
Full-Text [PDF 2674 kb]   (3077 Downloads)    
Type of Study: Research Paper | Subject: Ceramics

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.