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Abstract

In this study, we investigated the antimicrobial, bioactivity, and in vitro cytotoxicity of a
nanocomposite made of copper oxide (CuO) and aluminum oxide (Al,O3) with two different
morphologies of copper oxide (Spherical-sCuO and Nanoplate-pCuQO), which was made using
the Spark Plasma Sintering (SPS) process on a titanium substrate as an orthopedic implant. Two
different weight percents of copper oxide nanostructures of sCuO NP (10 wt%, 20 wt%) and
pCuO NP (10 wt%, 20 wt%) have been used in this research. Synthesized nanocomposites were
investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier
transform infrared spectroscopy (FTIR), and field emission scanning electron microscope
(FESEM). Based on the obtained results, the XRD pattern and XPS confirmed that the
nanocomposites were successfully synthesized without impurity. FESEM images showed that
CuO nanoparticles and nanoplates were distributed on the alumina matrix homogeneously. The
antibacterial activity of synthesized nanocomposites was investigated using Escherichia coli (E.
coli) and Staphylococcus aureus (S. aureus), gram-negative and gram-positive bacteria,
respectively. Antibacterial activity results showed that CuO nanoparticles had high antibacterial
activity, and the effect of CuO nanostuctures depended not only on their morphology and size,
but also on the type of microorganisms. Furthermore nanocomposite with nanoplate copper

oxide exhibited more bioactivity properties than the spherical shape. S. aureus showed greater
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resistance to CuO nanostructure, while E. coli was more susceptible to them (15%). In addition,
toxicity tests showed that nanoplate copper oxide exhibited greater toxicity due to its high
surface reactivity than spherical nanoparticles. This study provides new insights into the role of
copper oxide nanoparticle morphology in the properties of nanocomposites for use as

orthopedic implants.

Keywords: Nanocomposite, CuO, Alumina, SPS, Antibacterial Properties

Introduction

Titanium and its numerous alloys are widely used in the area of orthopedic implants due to their
outstanding mechanical characteristics, ability to resist corrosion, and their biocompatibility
[1]. Ti and Ti alloystill lack in their antibacterial capabilities and ability to promote bone
growth. Therefore, further research and development are needed to improve their performance

in these areas [2].

Despite the considerable advancements in healthcare, the risk of contracting an infection during
surgical procedures continues to be substantial, with a worldwide infection risk of 1-2% in
orthopedic surgeries [3]. Device infections can progress when bacteria adhere to implants and
form bio films, shielding them from the immune system. Exposing titanium to air results in the
formation of a thin layer of titania on its surface, rendering it suitable for use as a bio inert
material. This entails costly and intricate clinical interventions, posing a significant medical
challenge that is being addressed through innovative treatment approaches utilizing

nanomaterials and nanocomposites [4].
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Nanocomposites combine the advantages of nanomaterials such as chemical resistance, high
conductivity, bio compatibility, and elasticity. Nanocomposites are highly active nanostructures
that offer unique combinations and engineering possibilities. Their rapid growth and reactivity
in different surfaces make them highly valuable for various biological applications [5], such as
antibacterial properties and bio compatibility applications. Recently, Several reports have
focused on metal oxides such as aluminum oxide (Al,03), copper oxide (CuO), and nickel oxide
(NiO). In addition, increasing emphasis has been placed on the potential of copper oxide in

various areas such as antibacterial properties [6,7].

a, B, and y-Al,O3; are common phase modifications of Al2Os. a- Al,Os is the most occurring
form. Aluminum Oxide nanoparticle (AIOxNPs) are of interest for biomedical uses, especially
as an antibacterial agent. Limited data exists on their mechanisms for acting on microbial
growth [8]. Bacteriostatic effect involves electrostatic interaction with bacterial membrane/cell

13"

wall as well as the formation of aluminum cations (Al”") that initiate the generation of Reactive

13"

oxygen Species (ROS). The interaction of A" with cell membrane phospholipids causes

various structural and functional disorders. These disorders involve direct interaction with
proteins, leading to the creation of ion channels, receptors, and enzymes. Additionally, Al**

induces structural changes in the lipid membrane and affects the activity at the lipid/protein

interface [9,10].

Pakrashi et al. [11] showed a greater antibacterial activity of the a-phase of aluminum oxide
compared to y-aluminum oxide against Bacillus licheniformis after a two-hour exposure to
aluminium oxide. This was evident in a higher content of ROS after exposure to a-AlO3 (2.6
+ 0.02%) compared to y-Al2O3 (0.6 = 0.003%) at an AIOXNP concentration of 5 pg/mL [11].
The toxicity of alumina nanoparticles has been studied in the past decades, but due to the

physical and chemical complexity and the lack of control in a microcosm, it is difficult to draw


http://dx.doi.org/10.22068/ijmse.4180
https://ijmse.iust.ac.ir/article-1-4180-en.html

[ Downloaded from ijmse.iust.ac.ir on 2025-11-19]

[ DOI: 10.22068/ijmse.4180 ]

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

definitive conclusions from dynamic studies. Therefore, nanomaterials may not exhibit the

expected toxic response at low concentrations over extended periods [12].

Among the various different types of metal oxides, Copper oxide (CuO) is a p-type narrow
bandgap semiconductor with outstanding electrochemical, catalytic, photocatalytic, and
antibacterial properties [13]. CuO nanoparticles have been made with different methods like
hydrothermal, solvothermal, thermal oxidation, sonochemical, and microwave irradiation [14].
Efforts focus on creating synthesized CuO nanostructures with various shapes to improve its
effectiveness [15]. Like most metal oxides, the primary mechanism for achieving antibacterial
activity is the electrostatic interaction of nanoparticles with the bacterial outer membrane/cell
wall and the generation of Reactive Oxygen Species (ROS) [16, 17]. Studies show that
nanoparticles with different sizes, shapes, compositions, and surface charges have various
antibacterial properties due to differences in their ability to generate ROS [18]. Shima Tavakoli
et al. demonstrated the impact of morphology on the antibacterial properties of CuO; the
microbial sensitivity to CuO-NPs had dependent on the microbial species and nanoparticle

morphology and properties [19].

Different techniques have been introduced to coat the ceramics on a metal implant surface. The
Spark Plasma Sintering (SPS) technique presents itself as a revolutionary method in the realm
of advanced material synthesis and coating technologies. Known for its ability to rapidly
consolidate nanocomposites, SPS offers distinct advantages over traditional sintering processes,
including shorter sintering cycles, lower temperatures, and enhanced material densification [20,
21]. In aresearch performed by Christophe Tenailleau et al. a copper/zinc oxide nanocomposite
was developed using the SPS method. This nanocomposite exhibited high densification within
a very brief period of heat treatment under high pressure [22]. So, The application of SPS in
this study introduces a dual advantage of antimicrobial efficacy and osteogenic potential. By

leveraging SPS’s ability to retain nanoparticle morphology and create highly adherent, uniform
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coatings, the research highlights a promising pathway for developing next-generation

orthopedic implants.

In addition, the simultaneous sintering and bonding of copper oxide and alumina resulted in
enhanced antibacterial activity and bioactivity due to synergistic interactions between the
materials. Such effects are rarely achievable through traditional coating methods. Furthermore,
the methodology emphasizes the role of nanocomposite morphology —a topic underexplored
in current literature—thereby contributing novel perspectives to the field of biomedical material

science.

Therfore, in this study, SPS was employed to deposit CuO-Al,O3 nanocomposite coatings on

titanium substrates, unveiling novel insights into antibacterial and osteogenic properties that

are critical for orthopedic applications.

2. Experimental

2.1. Materials and Methods

Industrial pure Ti grade II were cut into pieces of 15 mm % 5 mm. Ti wafers were base with
different size of the metallographic sandpaper, polished and ultrasonically cleaned in ethanol.
a-AlO3 and spherical CuO (sCuO-NP) were purchased from US-Research Nanomaterials;

average particle size of the powders were around 150 nm and 50 nm, respectively, Fig. 1 (a,c).
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Fig. 1. FESEM images of raw material: a) Spherical shape of copper oxide (sCuO), b)

homemade synthesized Nanoplate of copper oxide (pCuO),and c) Alumina (a-Al203).

2.2 Synthesis of CuO nanoplates

Copper (II) sulfate pentahydrate (CuSO4.5H20) was purchased from MERCK as precursor
for synthesis of CuO nanoplates (pCuO). The solution of CuS04.5H>0 (0.1 M) was prepared
in 100 ml distilled water. The NaOH solution (1 M) was added drop by drop until the pH

amount of reactants increased to 13 .

The solution was next transferred into a Teflon-lined sealed stainless steel hydrothermal
autoclave and maintained at a constant temperature of 100°C for 18 hours under autogenous
pressure. Then it was cooled to room temperature. The sediment then obtained is placed in a
furnace and annealed in air at 40°C for 48 hour. Scheme 2 shows schematic of synthesis of

CuO nanoplates process.


http://dx.doi.org/10.22068/ijmse.4180
https://ijmse.iust.ac.ir/article-1-4180-en.html

[ Downloaded from ijmse.iust.ac.ir on 2025-11-19]

[ DOI: 10.22068/ijmse.4180 ]

130

131

132

133

134

135

136

137

138

139

140

141

142

100 ml H,0
CuSO0,.5H,0

S -

Fo )

?Ka%’ + f '5., ‘ ,_/i *
‘ NaOH (1M) Stirring 110 °C
e (60 min) 18 h

Vaccume Oven

[

Dried, 40°C
48 h

Fig. 2. Schematic of synthesis of CuO nanoplates process.

2.3 Deposition of nanocomposite thin films

In order to prepare nanocomposite thin films, a-Al>Os powders and CuO nanostructure were
mixed using a SPEX (8000D Mixer/Mill, USA) for 15 min with simple horizontal vibrating.
Nanocomposites with different weight percents of sCuO NP (10 wt%, 20 wt%) and pCuO NP
(10 wt%, 20 wt%) were coated on the Ti substrates by using the SPS technique. Table 1 shows

the SPS parameters.
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Table 1. SPS parameters.

Current 077 A

Vaccuum chamber 30 Mpa

Pressure 40 Mpa

Temprature 1000 °C

2.4. Characterization

Synthesized nanocomposites were characterized using FESEM (MIRA3, TESCAN-XMU,
Czech Republic) to investigate morphology, cross-section, size of NPs. In order to
investigate elemental composition of nanocomposite, X-ray diffraction (XRD) was carried
out using Philips PW3710 Cu Ka (at 45 kv, 30 mA, scanning speed:2 20 minute ™, step size:
0.02, step time: 0.5 s). The patterns were analyzed using X Pert High Score software. The
X-ray photoelectron spectrometer (XPS - Al Ko anode) was used to investigate the chemical
bonds present in the nanocomposites. XPS at energy of 1486.6 eV was employed to
investigate the surface atomic composition, and chemical state. Fourier transform infrared
(FTIR) spectroscopy (LR 64912C, Perkin Elmer) was used to analyze the different

functional groups of the adsorbent through the KBr pellet method.

2.5. Antibacterial activity

Escherichia coli (E. coli) ATCC 25922 (Gram-negative bacteria) and Staphylococcus aureus
(S. aureus) ATCC 45500 (Gram-positive bacteria) were utilized for measuring the effect of
antibacterial properties of pure and coated titanium by unit colony formation (CFU) method.
E. coli and S. aureus bacteria were initially cultured in Luria-Bertani (LB) agar medium,

which consisted of 10 g/L peptone, 5 g/L yeast extract, 5 g/L NaCl, and incubated at 37°C
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for 18 hours. The suspension was prepared from the freshly grown culture in sterile
physiological serum to achieve a concentration of 0.5 Mac Farland (1.5 x 108 cfu/ml),
resulting in 1.5 x 10”6 cfu/ml. All samples and control were incubated in sterile flasks with
the suspension at 37°C and 160 rpm for 24 hours. Blank suspension served as control. It is
noteworthy that the samples had been autoclaved for sterilization before incubation. The
samples from flasks were serially diluted in sterile physiological serum to prepare dilutions
of 10"-1, 107-2, 107-3, 107-4, and 10"-5. From each dilution, 10 and 100 microliters were
transferred to petri dishes with solid culture medium to determine the optimal dilution for
colony counting. Each sample was repeated three times, and the plates were incubated at

37°C for 48 hours. The number of colonies formed was counted, and the percentage of

antibacterial activity was calculated using the Eq (1) [23].

R=(B-A)/Bx100 (1)

Where R: is inhibition rate, A: is the number of colonies counted in the sample, and B: is

number of bacteria counted in the control sample.

2.56. Cytotoxicity test

The assessment of the samples' potential toxicity was carried out through the utilization of
dimethylthiazol-2 and 5-diphenyltetrazolium bromide (MTT) methodology on a mouse
fibroblast cell lineage known as L-929. In this method, the viability of cells was assessed to
determine the compatibility of the desired product. For each substance, the cell viability was
determined by the formation of formazan color through the reduction of the compound MTT or
other tetrazolium salts. Mitochondrial enzymes in living cells cleaved the tetrazolium ring,

resulting in the formation of soluble purple formazan crystals. The presence of these crystals
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indicates the activity of limited enzymes and the quality of cell survival in the test sample.
Finally, the percentage of surviving cells could be determined by measuring the absorbance at

a wavelength of 570 nm using the ELISA reader (Model: ELx808, BioTek, USA).

2.7. Bioactivity test

The osteogenic potential of the nanocomposite coatings was evaluated through immersion in
Simulated Body Fluid (SBF) using Kokubo's method [24] for 28 days at 36.5°C according to
ISO 23317 standard [25]. Over a 28-day period, Throughout this period, the pH of the SBF
solution was checked every 48 hours and then the solution was replaced with fresh solution,
which was added to the Falcon for all samples. Each sample required 10 cm? of solution,

determined by the formula Eq.(2):

SA/V=0.1cm ! 2)

Where SA represents the sample's surface area in cm® and V is the necessary solution volume
in cm®. Afterward, the samples were rinsed with distilled water and dried in the ambient

temperature or lab environment.

3. Results and discussion

3.1. Microstructural analysis of the precursor and nanocomposite films

The X-ray diffraction spectra for nanocomposite film containing CuO with different
morphology are displayed in Fig. 3. Detailed information regarding the compound name,
chemical formula, and reference card number for each phase can be found in Table 2. As can
be seen, the peaks of pure materials (CuO and Al,O3) are detectable for films with nanoplate

CuO, but for films with spheriacl CuO, copper oxide (CuO) was reduced to Cux0O, because of
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unstablity of sol-gel nanaoparticles at high temperature (The purchased CuO nanosphere is
made by the sol-gel method). Films containing CuO nanoplate were synthesized by

hydrothermal more stability is obsreved [26, 27].
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Fig. 3. XRD pattern of SPS nanocomposite.

Table 2: The names of the compounds, their chemical formulas, and reference card numbers

for the phases shown in Fig. 3

Chemical Formula Compound name Reference card number
a-AlLO3 Alpha-Alumina (Corundum) 96-900-9683
CuO Tenorite 96-101-1149
Cu20 Cuperite 96-900-7498
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Fig. 4. FESEM images of nanocomposite films containing: a) 10%wt sCuQO, b) 20%wt sCuO,

¢) 10%wt pCuO, d) 20%wt pCuO.

Fig. 4 shows FESEM image of spark plasma sintered 10%wt sCuO, 20%wt sCuO, 10%wt
pCuO, and 20%wt pCuO. There are three areas: 1) dark grey, 2) light white, and 3) the dark
area. The light white areas indicate the presence of the copper oxide phase, while the dark gray
areas are associated with the alumina phase. The dark areas in the images suggest the existence
of porosity. Unlike conventional sintering techniques that often degrade nanoparticle

morphology, SPS preserved the unique shapes of spherical (sCuO) and nanoplate (pCuO) CuO
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structures. This preservation was crucial for showcasing morphology-dependent antibacterial

and bioactivity outcomes

The high-pressure environment and rapid heating of SPS enabled strong adhesion of the
nanocomposite coatings to titanium substrates, as evidenced by FESEM cross-sectional
analyses. The absence of cracks and uniform coating thickness (~260+20 um) underscore the
method's reliability for biomedical applications. Fig. 5 shows cross-section FESEM images of

the sample.

- T BN e 130 WV
OV MRS 220 =
uaT wEIEM et 473

Fig. 5. FESEM images of cross-section films containing: a) 10%wt sCuO, b) 20%wt sCuO, c)

10%wt pCuO, and d) 20%wt pCuO.
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Fig. 6. shows map analysis of cross-section films (20%wt pCuO, 20%wt sCuO) which indicates
the distribution of elements in the entire coating created, has almost the same distribution of
elements, which shows that the powder mixed by the high-energy ball mill is well mixed and

has a uniform distribution, and no agglomeration and in-homogeneity can be seen.

Fig. 6. Map analysis of cross-section films; a) Oxygen, b) Aluminum, ¢) Copper, d) Titanium,

e) 20%wt sCuO, and f) 20%wt pCuO.

Fig. 7 illustrates the result of Energy Dispersive X-Ray (EDS) Analysis. The results confirm
the presence of copper, aluminum, and oxygen elements. Additionally, it indicates
nanocomposite film containing spherical copper oxide lost oxygen during coating which was

confirmed by our XPS results.
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Fig. 7. EDS of film a) 20%wt p CuO, and b) 20%wt s CuO.

XPS analysis was employed to examine the elemental surface chemical composition of a
20%wt sCuO and pCuO nanocomposite. The XPS spectra for the nanocomposites are shown
in Fig. 8. Based on the survey spectrum of 20% wt sCuO and 20% wt pCuO (Fig. 8a), the peaks
of Al (2p), Cu (2p), and O (1 s) suggest the existence of copper oxide, carbon, aluminum oxide,
and oxygen elements in the nanocomposite, respectively. There is no peak corresponding to
impurity elements in the XPS spectrum. The Al (2p) window is displayed in Fig. 8b; the main
peak is at 74.8 eV and can be de-convoluted by a doublet peak (Al 2p3p: 74.2 eV, Al 2p12: 75.3
eV), indicating the existence of O-Al-O bonds [23, 24]. Representation of O(1s) showing the
peak position of O phase at 530.08+0.1eV and the 1s peak of oxygen vacancy (V°) / adsorbed
0° phase at 531.49+0.1eV. A peak at E = 1.3-1.4 eV, higher in energy than the main Ois
(532.98) peak (Fig. 8c), is assigned to the AI-OH species. The existence of these species aligns
with the Trimethylaluminium (TMA) and H>O chemistry. De-convoluted XPS spectra of Cu

2p32 and Cu 2p1/2 peaks appear in Fig. 8.(d,e). The XPS peak fitting revealed the Cu2ps.2 peak
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displaying notable emissions of Cu®" at 933.80+0.1eV and Cu" at 935.30+0.1 and 934.65¢V,
indicating the presence of Cu" in the 934.65 peak of the pCuO sample (Fig. 6d), associated with
Cu-O bonding. In Fig. 6e, the sCuO sample window depicted, with the main peak showing two
distinct peaks: 935.30 related to Cu” and Cu-O bonding, also 933.80 related to Cu?" and Cur-O
bonding. Based on XPS results, the copper oxide structure (sCuO) wasn't fully converted to
Cu20 during coating. The weight percentages of CuO and Cuz0O in surface are 64.7 and 35.3,
respectively. The distinction between XRD and XPS interpretations is due to their varying

experimental mechanisms [36, 37].
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Fig. 8. (a) XPS survey spectrum of the nanocomposite.; high-resolution core-level XPS

windows spectra of: (b) Al (2p) (c) O (1 s), (d) Cu(2p) for pCuO and (e) Cu(2p) for sCuO.

The FTIR results showed that both pCuONP and sCuONP spectra had multiple peaks of
functional groups (Fig. 9). The observed peaks indicated at 1088 cm™! is associated with CO

! corresponded to the stretching and bending vibrations of O-H in

stretching and 1614cm
absorbed water. The characteristic peaks at 615 cm™ and 588 cm™ is attributed to displayed the
formation of CuO/Al,O3; nanocomposite. The bands observed at 662 cm™' and 709 cm™
corresponded to the stretching vibration of the AI-O bond. Finally, the absorption peaks

positioned from 446 cm™ to 588 cm™! region revealed the presence of characteristic peaks of

Cu-O.
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Fig. 9. FTIR spectra of 20%wt pCuO NP and 20%wt sCuO NP.

3.4. Antibacterial activity

Antibacterial activities of synthesized nanocomposite against E.coli and S.aureus bacteria (for
12 h at 37-C) were investigated using the colony-counting method (Eq. (1)). Fig. 10 (a,b)
illustrates images of agar and control sample containing no antibacterial agent in the E. coli and
S. aureus culture medium. At first, the antibacterial activity of the base metal (titanium) were
investigated. Generally pure Titanium metal itself does not have significant antibacterial
properties. Wei Jiang [28] while researching Al>O3; nanoparticles exhibited mortality rates of
57% for Bacillus subtilis (B. subtilis), 36% for E. coli, and 70% for Pseudomonas fluorescens
(P. fluorescens). Based on Fig. 11, it can be seen that the incorporation of nano copper oxide
and alumina effectively increases the antibacterial property which is lead to synergistic effects
of combination copper oxide with alumina. The remarkable antibacterial activity of pCuO
samples was previously reported to be due to an increase in surface area, which increased

bacterial interactions [29]. According to our results (Fig. 11) and pervious studies the
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antibacterial effect of CuO-NPs depends not only on their morphology and size, but also on the
type of microorganism, S. aureus showed greater resistance to CuO-NP, while E. coli was more
susceptible to them [30]. Luz E.Roman [31] believed that CuO nanoparticles bound to the
bacterial cell wall dissolve, and CuO*" ions are transfected into the cytoplasm membrane. The
layer on the outer membrane of E. coli bacteria which name is Lipoteichoic acid contains large
amounts of negatively charged lipopolysaccharides that may supply attachment parts for CuO
nanoparticles. However, studies are required to make clear the mechanisms behind these

morphology effects.

10% wt pCuO E.coli 10% wt sCuO E.coli 20% wt pCuO ST I
2 ) B— = —_—
,"/ -,

20% wt sCuO B Il



http://dx.doi.org/10.22068/ijmse.4180
https://ijmse.iust.ac.ir/article-1-4180-en.html

[ Downloaded from ijmse.iust.ac.ir on 2025-11-19]

[ DOI: 10.22068/ijmse.4180 ]

326

327

328

10% wt sCuO [SEFTTTIIT 20% wt pCuO [IPHTFRNTE
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Fig. 11. The antibacterial activity test after 12 h of contact with a) E. coli and b) S.aureus at

37°C.

3.5. Cytotoxicity test

The effect of all samples on cell viability obtained according to the following relationship:

Viability = ODc/ODr 3)

The optical density of films and control samples are represented by ODC and ODR,
respectively. The cell viability percentage of s-CuO NP (10, 20 %wt) and p-CuO NP (10, 20

%wt) films presented in Table 3 and Fig. 12. Normally Al>O3 nanoparticle exhibited non-toxic
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impact at the concenteration of 500 pg/mL and lower, thus cytotoxicity was influenced by
concentration, exposure time, and cell type [32]. It has been shown in various studies that the
direct contact of nano copper oxide with cells leads to cell death. Also, Luz E [31] determined
during research that the use of nano copper oxide particles in the equipment and clothes of
health centers can improve health, and help to removing Healthcare-Associated Infections
(HAIs), and it is non-toxic to human skin, because it does not have direct contact with our cells.
Hossein Alishah [33] reported the effect of nano copper oxide during the MTT assay on cancer
cells (MCF-7), which indicated the highest anti-cancer activity at a concentration of 160 pg/ml,
therefore like our results, cell viability decreased as the concentration of copper oxide
nanoparticles increased (dose-dependent). According to the results obtained, it can be
understood that sCuO-NP are less toxic than pCuO-NP. Nanoplate copper oxide due to their
high surface reactivity exhibited greater toxicity compared to spherical nanoparticles.
Generally, previous studies reported kind of mechanisms of nano-copper oxide effect on cells
and their interactions with each other, but the main was that Cu®* release from CuO NPs caused

toxic effects by generating ROS and damaging cellular DNA [34].

Table 3: Cell viability percentage of control, 10 and 20% pCuO and sCuO.

Sampels Average OD Average control  Viability (%)

10%wt pCuO  0.084 0.470666667 17.91785
20%wt pCuO  0.072 0.470666667 15.36827
10%wt sCuO  0.097 0.470666667 20.60907
20%wt sCuO  0.080 0.470666667 17.06799
Control+ 0.082 0.470666667 17.4221
Control- 0.470 0.470666667 100
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Fig. 12. The Cells viability percentage comparison of nanocomposites.

3.5. Bioactivity test

Based on our results, 20% wt sCuO and pCuO exhibited higher antibacterial activity compared
to the other samples. Therefore, it was selected as the optimum nanocomposite, and bioactivity
assay was carried out on it. The ramps between each time point showed the increase in pH due
to the release of ions from the nanocomposites into the solution. The pH drop noted every 48
hours resulted from the complete solution replacement, simulating fluid recirculation under
physiological conditions. No pH-related toxicity issues were predicted since the maximum pH
reached during soaking was approximately 7.7 for both samples (Fig. 13). This slight increase
in pH may even enhance osteoblast activity, which is often boosted in a mildly alkaline

environment.
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facilitating new bone production [49].
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In vitro bioactivity experiment in SBF indicated that the nanofilms effectively form

Hydroxyapatite (HA). After 14 days of immersion, the surface appears to be covered by a thin

layer of HA; Surface changes were evident (Fig. 14a,b). After 28 days, the surface of the both
samples appeared to be completely covered by a homogeneous layer of HA (Fig. 14c,d). The
formation of a HA layer on biomaterial surfaces is critical for interfacial bonding with bone

post-implantation, as osteoblasts adhere to and proliferate on this calcium-phosphate layer,

Semi-quantitative EDS analyses of the nanofilms surfaces after soaking in SBF for 14 and 28
days submited Ca/P molar ratios of 1.61 + 0.04 and 1.59 = 0.05 (calculated on three sites) for

20%wt pCuO and sCuO samples, respectively. These values are near the stoichiometric HA
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(1.67), indicating an advanced stage of the sample surface's conversion to HA. EDS analysis
revealed that the Al and Cu peak decrease after 14 days immersion in SBF (Fig.14.e,f), while
the peaks of Ca and P are clearly visible after 28 days (Fig. 14.g), This indicates that the

nanofilm surface was fully covered by a thick layer of calcium phosphate.

As additional evidence of the good HA-forming ability of the nanofilm, XRD analyses were
carried out on 20%wt sCuO and 20%wt pCuO samples immersed up to 28 days in SBF (Fig.
15). The analysis showed that the diffraction peaks indicating the HA crystalline phase were
almost visible after 28 days of immersion in SBF. A major peak was observed at approximately
32° (211), indicating the main reflection of HA. Additionally, the other major HA peak
emerged at 26.2° (002), corresponding to the reflection of HA. In comparison of two different
morphology of copper oxide and based on the number of peaks in X-ray analysis (Fig. 15), it

can be inferred that the quantity of apatite formed in the nanoplate structure exceeds that of its

spherical shape.
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Fig. 14. FESEM micrographs of the surface of 20%wt sCuO (a,c) and 20%wt pCuO (b,d)
nanofilms after immersion in SBF for14 and 28 days; EDS spectrum of the newly formed

surface layer on both sample after 14 and 28 days in SBF (e,f,g).
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Fig. 15. XRD pattern of nanocomposite after 28 days immersed in SBF solution.
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Table 4 : compounds, chemical formulas, and reference card numbers for the phases shown in

Fig. 14.
Chemical Formula Compound name Reference card number
Cas(PO4);0H Hydroxyapatite 96-101-1243

Therefore, the formation of hydroxyapatite (HA) layers was observed, demonstrating the
material's ability to support bone regeneration. Nanoplates exhibited superior HA formation
compared to spherical CuO, as confirmed by XRD and EDS analyses, with prominent peaks

indicating well-crystallized HA

Conclusions

Orthopedic implants face the dual challenge of preventing postoperative infections while
promoting osseointegration for long-term stability. To address these issues, we have developed
nanocomposite coatings of CuO/Al,O; with distinct CuO morphologies (spherical and
nanoplate), deposited on titanium substrates using the Spark Plasma Sintering (SPS) method.
This innovative coating exhibits antimicrobial efficacy against E. coli and S. aureus while
simultaneously fostering osteogenic activity, as evidenced by MTT and SBF assays. XRD,
FTIR, and XPS analyses exhibited the successful synthesis of the nanocomposites. The
combination of Copper oxide and Alumina demonstrated strong antibacterial properties,
effectively inhibiting the growth of S. aureus and E. coli, with nanoplate Copper oxide proving
more effective than its spherical counterpart. MTT results indicate that cell viability decreases
as copper oxide concentration increases (dose dependent). Conversely, two nanocomposites
containing 20% by weight of copper oxide with different morphologies passed the

biocompatibility test.
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