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Abstract: In this article, a novel bio-nanocomposite sample made of sodium alginate polymer, graphene nano-
sheets and wollastonite powder were produced using freeze-drying technique. The samples were mechanically and 
biologically evaluated using tensile strength and biological test. The phase and topological characterization were 
conducted by performing X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies. Subsequently, 
using Euler-Bernoulli and Timoshenko beam (EBT and TBT) theories, the buckling response of the porous bio-
nanocomposite soft tissue were analyzed with respect to graphene content. In order to solve the governing 
equations a sufficient numerical solution is proposed. Elastic modulus and mass density of the porous bio-
nanocomposite are extracted from the experimental tests. The obtained results indicated the sample with 1 wt.% 
graphene sheet showed proper mechanical and biological features. Therefore, the sample with 1 wt.% graphene 
sheet can be used as potential case for light weight bone substitute applications. 
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1. INTRODUCTION 

Regarding human body disability of repairing 
bone defects, application of artificial bone tissue 
has received much attention in recent decades. 
New generation of bio-scaffolds are the 
appropriate approach for defective bone tissue. 
Bone defects are the consequences arising from 
trauma, accident, genetic or disease [1]. 
Recently, several studies have been conducted to 
produce novel porous bio-nanocomposite 
scaffold materials using various methods for 
clinical applications [2-4]. Biomaterials used in 
this category of application should be bioactive 
and made of synthetic or natural polymers, 
ceramics, and metals with sufficient porosity to 
ensure blood circulation inside human body 
using software and anatomical model [5-10]. 
Despite bioactivity, such materials have shown 
low mechanical properties and weak chemical 
stability beside problematic reaction in 
biological environment. Sufficient techniques 
have been presented to improve biomaterial 
mechanical characteristics such as compressive 
strength, fracture toughness, porosity and tensile 
strength [11-16]. Ceramic materials including 
hydroxyapatite (HA), biphasic calcium 
phosphate (CaP), bio-glasses (BG), and β-

tricalcium phosphate (βTCP) are being 
employed in bone tissue engineering 
applications [17-25]. Moreover, calcium silicates 
(CS), as a class of glass silicate, are one the bio-
active-ceramic that has been utilized for 
orthopedic applications for decades [26-27]. The 
CS bioceramics are also used as coating cover 
for improving bioactivity of the porous scaffold 
implants [27]. Another fascinating property of 
CS is the ability to bond with natural bone inside 
the body, and the combination of CS with 
Magnesium (Mg) [28], Zinc (Zn), Strontium (Sr) 
[29] results in ameliorate molecular bonding 
properties for bone tissue approaches [30]. The 
CS bioceramic perform better mechanical 
behavior in comparison to other CaP bio-
ceramics [31]. However, due to the required 
porosity and proper porous microarchitecture, 
the scaffold discloses unsuitable mechanical 
stiffness required for body weight and applied 
forces. Xu et al. [32] conducted in vivo bone-
generative resorption and evaluate the capacity 
of porous bioactive β-calcium silicate (β-CS) 
ceramics in a rabbit calvarial defect model. The 
β-CS ceramic was implanted in rabbit calvarial 
defect for 4, 8, and 16 weeks. Lin et al. [33] 
scrutinized the osteoporotic defect bone 
generation improvements by utilizing porous Sr-
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substituted calcium ceramic scaffolds. Improving 
the mechanical characteristic of CS has been a 
controversial topic since the first usage of this 
material in biomedical application. Several 
strategies are proposed for improving its 
mechanical performance including 
reinforcement like graphene sheet (GS), 
magnetite nanoparticles (MNPs) or carbon 
nanotubes (CNTs). Mehrali et al. [34] 
synthesized a calcium silicate-reduced graphene 
oxide for hard tissue applications with enhanced 
mechanical properties using graphene reinforced 
CS. GS and CS both indicated proper 
biocompatibility features for bone 
microstructures like scaffolds and porous 
network. Shao et al. [35] developed a high 
strength Mg-doping wollastonite based scaffold 
by 3D printing technology having pore size and 
the heating procedure to strengthen the scaffold 
microstructure. Several polymers have been used 
for such purpose including chitosan, alginate, 
sodium alginate, gelatin application in 
pharmacokinetics [36-42, 53]. Xiong et al. [43] 
proposed a novel hybrid sodium alginate-based 
nanocomposite reinforce via graphene oxide and 
hydroxyapatite produced by freeze-drying 
method to mimic required mechanical and 
biological properties range. Another application 
of hybrid tissue is water treatment, for instance, 
Karkeh-abadi et al. [44] developed efficient 
adsorbents to remove radioactive pollutants from 
medical and industrial wastewater by 
functionalized CNT in sodium alginate-based 
nanocomposite. Lonita et al. [45] presented a 
novel study on the sodium alginate graphene 
oxide nanocomposite films with enhanced 
mechanical and thermal properties showing high 
interfacial adhesion between graphene and 
alginate matrix due to its hydrogen boding 
remarkably altered the mechanical properties 
and thermal stability of the bio-nanocomposite 
films. Scaffold fabrication techniques including 
solvent casting [46], particulate-leaching [47], 
gas foaming [48], phase separation [49], freeze-
drying [50-51], and 3D printing [52-53] are 
being used widely for biomedical usage. 
However, among these techniques, freeze-drying 
is one of the important, low cost, easily 
accessible and developed methods since it has 
the ability to control the porosity by the rate of 
freezing. Khorsand et al. [53] developed TiO2 
based scaffold doped in chitosan/HA utilizing 

freeze drying technique with various 
hydroxyapatite ratios. The application bio-
nanocomposites are extended in term of other 
fields studies including dental application [54-
58]. In previous study, Foroutan et al. [59] 
concentrated on manufacturing polymer-based 
scaffold with wollastonite-graphene 
reinforcement. The mechanical and biological 
characterizations of prepared scaffold are 
studied. Moreover, the optimization is applied to 
the study for clear announcement of the 
optimum sample. Saber-Samandari et al. [60] 
prepared polyacrylamide-based nanocomposite 
scaffold incorporating nanohydroxyapatite by 
freeze drying method. To evaluate the 
mechanical behavior of the prepared bio-
nanocomposite, the Timoshenko and Euler-
Bernoulli beam theories are applied in different 
studies to investigate the buckling and bending 
behavior of beams. Sahmani et al. [61] 
investigated the nonlinear bending and 
instability of bredigite bioceramic incorporating 
magnetic nanoparticle. Foroutan et al. [62] 
proposed the buckling behavior analysis of 
current carrying nanowires regarding the 
magnetic field (MF) effects incorporating 
surface and nonlocal effects. Results revealed the 
MF increases the buckling load while nonlocal 
parameter reduces the buckling load. The 
mechanical and biological feature of 
biomaterials domain has been investigated with 
various techniques such as wet chemistry and 
mechanical activation methods. Several works 
have been conducted on drug loading and effect 
of nanoparticles on the composite. Molecular 
dynamic (MD) evaluation also can predict the 
mechanical properties of macron and micron 
scale [63-77]. Various numerical investigation 
has been performed on the composite to discover 
the influence of interphase of composite 
mathematically [68-74]. In the current paper, the 
sodium alginate biopolymer is composed with 
wollastonite ceramic to prepare proper bone 
substitution for orthopedic approaches. 
Moreover, GS is added in various content levels 
to the bio-nanocomposite. Mechanical and 
biological characterizations of the prepared bio-
nanocomposite are surveyed. In order to 
investigate the mechanical behavior of the 
composed bio-nanocomposite, the Timoshenko 
and Euler-Bernoulli Beam theories (TBT) and 
(EBT) are used based upon the extracted elastic 
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modulus and mass density of the porous bio-
nanocomposite from experimental examination 
to develop the classical beam responses. 

2. EXPERIMENTAL PROCEDURES 

2.1. Raw Materials 
In the current study, the graphene nanosheet was 
used to enhance the new generation of calcium 
silicate (CS) scaffold. Sodium alginate (SA) as a 
natural polymer (Mw=216.12 g/mol, 98% purity, 
size <100 nm Merck company, Germany) were 
purchased. The wollastonite nanopowder was 
fabricated using high-energy ball milling 
(HEBM) and graphene sheet (GS) nanoplatelets 
(US Research Nanomaterials, Inc, +99.5%, 2.18 
nm with 32 layers) are utilized.  

2.2. Wollastonite Preparation 
First, the preparation of wollastonite (WS) 
made of CaCO3 and SiO2 mixing by magnetic 
stirrer with 400 rpm and 25 ˚C dissolving in 
Acetic acid and water solution. Then the 
obtained gel is kept for 3 days in 70 ˚C. 
Furthermore, the temperature was increased to 
150 ˚C for 24 h to dry the gel [59]. Dried gel is 
milled and filtered to reach particle size of 10-
50 µm. Finally, two heating operation is applied 
on the particle in 700 ˚C and 1000 ˚C for 3 h to 
create the WS ceramic powder. 

2.3. Nanocomposite Preparation 
After the WS was prepared, manufacturing 
process of scaffold composites was performed. 
Briefly, 7.5 gr of sodium alginate powder was 
synthesized with 100 mL distilled water and 1 
vol% acetic acid stirring for 3h and 1200 rpm 
with 50 ˚C. After that, 1.8 gr of WS powder were 
mixed with for various content of graphene (0, 1, 
2, and 3 wt% GS) based on constant WS powder. 
In order to combine the prepared SA biopolymer 
and synthesized GS-WS powders the digital 
ultrasonic device is employed [59]. 

2.4. Scaffold Preparation 
Then, the four porous bio-nanocomposite 
scaffolds were placed into freezer at -70 ˚C for 
24 h. The frozen porous scaffold was set into the 
freeze-drier device for another 24 h at -45 ˚C 
with 0.01 bar to drain all the available waters to 
improvise required porosity (DORSA-TECH 
Company, Tehran, Iran) [59]. Porous scaffold 
removed from the freeze-drier machine after 48 
h and placed in the incubator. Therewith, the 

mechanical and biological tests are performed on 
the four porous bio-nanocomposites. 

2.5. Characterization 

2.5.1. Porosity Measurement 
To evaluate the porosity of the bio-
nanocomposite, the Archimedes and Image-J 
techniques were used. To this end, a graded 
cylindrical container with a fixed stilled water 
volume (V1) is utilized [59]. Then, the prepared 
bio-nanocomposite was place into the water so 
that the water penetrates all the available 
porosity in the matter (V2). Afterward, the 
composite was pulled out of the container and 
the volume of water was measured (V3). The 
formula for the porosity percentage is written as 
equation 1: 

Porosity (%) = (V1- V3)/ (V2- V3)100      (1) 

2.5.2. Tensile Strength Evaluation 
The mechanical properties of the nanostructure 
including tensile strength and elastic modulus 
are investigated by the tensile strength device 
(SANTAM-STM50) by applying load of 0.5 
mm/min [59]. The porous samples are cut into 
pieces with 9 mm diameter and 20 mm length 
corresponding to the fixed materials (WS-SA) 
and various content of GS powder. Obtained data 
are used to plot the stress-strain graph. The 
graph slop and the maximum value of stress are 
the elastic modulus and tensile strength, 
respectively. 

2.6. Biological Evaluation 
The Simulated Body Fluid (SBF) was utilized in 
order to evaluate the pH behavior of bio-
nanocomposite. The ionic concentration of SBF is 
very similar to human blood plasma; therefore, it 
is used to evaluate the bio-nanocomposite pH 
behavior. To this end, the samples are drowned in 
SBF for 1, 3, 7, 14, 21 and 28-day’s periods. The 
pH value is determined using a digital pH meter 
device at Amirkabir University Technology.  

2.7. Microstructural and Phase 
Characterization 
The morphology and structural properties of Na-
alginate-WS-Graphene Sheet porous bio-
nanocomposite scaffold are characterized 
through scanning electron microscopy (SEM) at 
Amirkabir University of technology (SERON 
Technology-AIS2100, South Korea, Display 
Magnitude 15 to 30000, Resolution 5/3 nm). The 
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device voltage and electricity current were 40 
KV and 30 mA, respectively. Moreover, phase 
composition of Na-alginate-WS-GS scaffold is 
investigated utilizing X-ray diffraction (XRD) 

(INEL-EQUNIX 3000, French). Figure 1 
displays the manufacturing process of fabricated 
scaffold bio-nanocomposite and required 
analysis of the structural characteristics.  

 

 

 

Fig. 1. Schematic of fabrication procedure of porous bio-nanocomposite made of Na-alginate-WS-reinforced 
with graphene oxide using freeze drying technique. 
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2.8. Analysis of Porous Scaffold Based on 
EBT and TBT Theories 
In this section, the buckling behavior of bio-
nanocomposite is investigated using TBT and 
EBT. Governing equations are derived based on 
both Euler-Bernoulli (EBT) and Timoshenko 
Beam Theories (TBT). Clamp-clamp (C-C) 
boundary conditions are imposed to simulate the 
bone replacement in the human body. 
Afterwards, the governing equations are solved 
using Generalized Differential Quadrature 
Method (GDQM) [12, 62 and 64]. According to 
the Hamilton’s principle the buckling 
equilibrium equations is written as: 

δU-δW=0 

Where δU and δW are virtual strain energy and 
virtual work done by external applied forces, 
respectively. Regarding the EBT and TBT 
theories, displacement fields are expressed as: 

,)x(-
dx

)x(dw
)z(P

dx

)x(dw
z-)x(u)z,x(u 



   (2) 

,0)z,x(ν =  

),x(w)z,x(w  

Where u, w, and φ are axial displacements, 
transverse displacements, and angle rotation of 
cross section about y-axis, respectively. P(z) for 
both EBT and TBT is defined as: 

P(z)=0        EBT 

P(z)=z        TBT                    (3) 

Based on defined displacement field, the strain 
components can be express as: 

,
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In order to derive the classical governing 
equations based on Hamilton’s principle, the 
stress resultants are defined as: 

  ∫∫
A

xz

A

xx ,dA
dz

dP
Q̂,dA)}Pz(,P,1{Ĥ,M̂,N̂  (5) 

Where σxx and σxz denote stress tensor 
components. Finally, the generalized governing 
equations (GGE) are derived according 
Hamilton’s principle as follow:  

,0f
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Where δφ is merely expressed in TBT. 
Moreover, q and f are the transverse and 
distributed axial loads, respectively. For EBT 
and TBT the derived equations based on Eq. 5 
are written as: 
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Where G is the shear modulus of elasticity that 
can be derived from G=E/(2(1+ν)), ν is the 
Poisson’s ratio which can be derived from rule of 
mixture (ROM) as [65]: 

,VVV GrGrSASAwsWs   

Where Vws, VSA, and VGr are the volume fraction 
WS, SA, and GS, respectively. Moreover νWs, 
νSA, and νGr are the Poisson’s ratios for WS, SA 
and GS, respectively. For acquiring more general 
responses the following dimensionless groups 
are utilized: 

EI
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,,

L
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x

2
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2.8.1. Generalized Differential Quadrature 
Method (GDQM) 
In order to solve the derived equation a 
numerical method is used. This method is known 
as Generalized Differential Quadrature Method 
(GDQM) [59-64] which is famous for its simple 
and low-cost calculations. Applying the 
boundary conditions is an outstanding point of 
this method since the boundary conditions can 
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be imposed simultaneously with the calculations. 
There are no restrictions on the number of mesh 
points applied for approximation in this method. 
Moreover, the weighted coefficients are derived 
by simple recurrence relation rather than a set of 
algebraic equations. These two advantages make 
GDQM a superior method in comparison to 
other DGM approaches [12, 62, 64, 65]. The 
partial derivations of function f with respect to 
spatial variables at the point xi are expressed as: 

∑N

1j j
)n(

ijn

n

),x(fC
dx

fd
=

=                  (10) 

where )n(
ijC  and N are weighted coefficients 

matrix and the number of mesh points, 
respectively. Moreover, f can be replaced by u, 
w, and φ. For the first derivation, weighted 
coefficient matrix is written as: 


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
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Where i, j are natural numbers. The weighted 
coefficient for higher-order derivation is 
expressed as: 

∑N

1k

)1(
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)4(
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Another important factor in the accuracy and the 
convergence of the solution is the distribution 
pattern of the mesh points. Here, the Chebyshev-
Gauss-Lobatto (CGL) distribution pattern is 
expressed as: 





















)1N(

)1i(
cos1

2

1
xi      i=1, 2, 3,…, N 

For improving the accuracy of the responses in 
implementation of GDQ method, the number of 
mesh points for a converged response are shown 
in Fig. 2. 
2.8.2. Applying the Boundary Conditions 
The corrected collocation method [65] is applied 
to enforce the boundary conditions. For clamp-
clamp boundary condition the following 

boundary conditions are imposed in the 
governing equations:   

w(0)=w(1)=0 

w'(0)=w'(1)=0 

w(0)=w(1)=0 

u(0)=u(1)=0 

φ(0)=φ(1)=0 

Solving the equations based on GDQM and the 
essential boundary condition requires the 
application of eigenvalue theorem. After 
implementation of the eigenvalue theorem, the 
minimum dimensionless critical buckling load is 
obtained, then by utilizing the related 
dimensionless term the value of critical buckling 
load is acquired. The constant geometrical and 
mechanical values used in this research are 
assumed as:  

L=15mm, D=1.5mm, νWs=0.3, νSA=0.5, νGr=0.3 

 
Fig. 2. The critical buckling load in terms of number 

of mesh point 

 

3. RESULTS AND DISCUSSION 

In this section, the obtained results from the 
biological and mechanical tests are discussed 
and evaluated thoroughly. Moreover, XRD, 
SEM, and numerical analysis are debated 
regarding the obtained results. By the means of 
such tests and analysis the bio-nanocomposite 
behavior and bio-compatibility are examined, 
and the 1 wt% GS is selected as the most 
sufficient one.  

3.1. Mechanical Tests 
Fig. 3 depicts the stress-strain graph for four 
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levels of graphene weight percent. Extracted 
from the given graph, the elastic modulus is 
derived. As it is obvious from Fig. 3, increasing 
the GS weight percent from 0 wt% to 2 wt% 
would increase the material stiffness. It is 
absorbing that the GS percentage would decrease 
the material stiffness for the third level of 
graphene sheet (GS=3 wt%). This is probably 
happened due to the mixing features of the 
materials and agglomeration. Extracted data 
were obtained from previous work [59] to 
discover the elastic modulus of 0 to 3 wt% GS 
added to the sodium alginate-wollastonite.  

3.2. pH Observation 

In this section the pH behavior of prepared 
porous bony bio-nanocomposite is discussed. 
Fig. 4. represents the pH ranges for the basic 
(without GS) and optimum samples, and this pH 
rages can influence the rate of degradation. 
Since, WS is ceramic composed of silicate, it can 
affect the trend of pH changes and dominate the 

trend. Therefore, the basic sample can indicate 
the trend of pH changes for other various levels 
of GS powder. It means if the pH basic sample 
increases the other samples also follows the 
same trend. However, the GS can also influence 
the pH ranges. As it is shown in Fig. 4, the WS 
for pure sample increase the pH value, however; 
the graphene nanosheet is change reversely.  

3.3. XRD Analysis 

In this section, the XRD data are analyzed and 
discussed. Fig. 5 described the XRD reveals that 
produced bio-nanocomposite are containing GS 
since the XRD for the pure Gr pick on 26.5° 2θ 
are repeated for the bio-nanocomposite with 2 
and 3 wt% GS. It is also discovered that the 
picks on approximate 30° are the one showed for 
the highest pick of WS on almost the same 
degree. The reasons of such small shifts on the 
degrees of highest peaks are inferred from the 
composite structure.  

 
Fig. 3. Stain-stress graph for four levels of Graphene (i.e.; GS= 0-3 wt%) 
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Fig. 4. The pH values in terms of number of days for basic and optimum composites 

 

Fig. 5. XRD pattern of prepared scaffold using freeze drying technique containing various amount of GS 
 

3.4. SEM Analysis 
The SEM images is a way to see the composite 
structure including porosity, material, and samples 
layout. Fig. 6 shows the SEM images of four levels 
of GS weight percent. Fig. 6(a) shows when GS is 
not added to the bio-nanocomposite, the bonds 
between SA and WS are attended to be weak and 
string like. The WS nanoparticles are clustered and 
cause to create bio-nanocomposite with low 
porosity. Moreover, Fig. 6(b) shows the sample with 
1 wt% GS chemical bonds between GS and WS are 
presented, thus the porosity size decrease to the 
rages of 150-200 µm. Fig. 6(c) displayed that when 
the GS weight percent increases, the agglomeration 
happens, and the GS agglomeration bond to the WS 
nanoparticles. This phenomenon decreases the 
porosity, but not happening all over the sample. Fig. 
6(d) shows the porosities are shaped wall-like, and 
the connections between WS and GS homogenously 
distributed all over the sample. 

3.5. TBT and EBT Results 
In this section, the buckling behavior of bio-
nanocomposite beam restricted by clamp-clamp 
(C-C) boundary condition is discussed, and the 
obtained results are shown. Fig. 7 introduced the 
critical buckling load in terms of diameter and 
length are depicted for four levels of GS based on 
EBT. As it is previously shown, increasing the 
diameter incorporate escalations in the values of 
critical buckling load [12, 59, 62]. In contrast, the 
length of nanocomposite beam plays a 
contrariwise role which indicates reduction of 
critical buckling load as the length grow. Figure 8 
plotted the critical buckling load as a function of 
diameter and length for various levels of GS. Fig. 
7 and Fig. 8 displays the same results for length 
and diameter of bio-nanocomposite. Moreover, 
increasing the weight percentage of GS in the 
nanocomposite decreases the material stiffness and 
diminishes the critical buckling load [66 - 68].  
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Besides, a comparison of EBT and TBT value in 
the Figures discloses that the critical buckling load 
is lower in TBT because of considering more 
degrees of freedom. After evaluation of TBT and 
EBT, one can conclude that prepared scaffold 
compared to the other works have proper 

properties to load any drug and consider various 
nanoparticles in the sodium alginate and 
wollastonite matrix. Also, application of molecular 
dynamic (MD) can help the researchers to predict 
the mechanical properties of macron and micron 
scale without experimental testing [63-78]. 

 
Fig. 6. SEM images of porous sample containing (a) 0 wt%, (b) 1 wt%, (c) 2 wt%, (d) 3 wt% of GS in the 

sodium alginate-wollastonite matrix fabricated using freeze drying technique 

 
Fig. 7. Variation of critical buckling load in term of nanocomposite (a) diameter, and (b) length for four levels of 

Graphene based on EBT and clamp-clamp (C-C) boundary condition. 
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Fig. 8. Variation of critical buckling load in term of nanocomposite (a) diameter, and (b) length for four levels of 
Graphene based on TBT and clamp-clamp (C-C) boundary condition. 

4. CONCLUSION 

Elastic modulus and mass density of the bio-
nanocomposite are extracted from the 
experimental tests. The obtained results 
indicated that the sample with 1 wt. % graphene 
nanosheet has shown proper mechanical and 
biological features. Therefore, the sample with 
1 wt.% graphene can be used as potential case 
for light weight bone substitute applications. In 
this section, the obtained results from the 
biological and mechanical tests are discussed 
and evaluated thoroughly. Moreover, XRD, 
SEM, and numerical analysis are debated 
regarding the gained images and facts. Using 
such tests and analysis the bio-nanocomposite 
behavior and bio-compatibility were examined, 
and the 1 wt.% graphene nanosheet sample is 
selected as the most sufficient one. There are no 
restrictions on the number of mesh points 
applied for approximation in this method. 
Moreover, the weighted coefficients are derived 
by simple recurrence relation rather than a set 
of algebraic equations. These two advantages 
make GDQM a superior method in comparison 
to other DGM approaches. The synthesized 
calcium silicate-reduced graphene oxide for 
hard tissue applications with enhanced 
mechanical properties using graphene 
nanosheet reinforced CS was successfully 
achieved. 
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